The MDM Ecosystem

By Sherri Adame, Enterprise Metadata and Master Data Leader | Chief Customer and Reference Data Governance Officer, Cigna

Sherri Adame, Enterprise Metadata and Master Data Leader | Chief Customer and Reference Data Governance Officer, Cigna

For the last two years I have been working on sound practical processes to govern data. That means creating an inventory of data by creating or harvesting the available metadata, and running unattended rules to ensure that metadata and data are high quality. Our team has been taking the work done in the data lake ecosystem and applying it to master data management (MDM) processes. This work has joined corporate thinking to technology, creating an MDM ecosystem to support our requirements.

Executives want to grow the organization at a rapid pace and outshine our competitors. Management thinks we need a fancy new MDM technology. Folks on the delivery teams talk about the technology design, and state that we need a person to model data, do deep data quality analysis, map data, ingest data, transform data, test data, manage the effort, and that we need many more people to do the required coding to customize the solution. But what everyone agrees we need are: good technology; a small, formidable team; and reusable processes to create and maintain high quality data.

The MDM technology industry is a mix of successful mature solutions and rising young solutions. Many of the mature solutions have an approach that a single proprietary data model with an embedded data lifecycle management algorithm will meet all organizational needs. The rising young solutions have a fresh perspective that advocates not using your internal infrastructure to manage your master data but to host your data to a cloud environment. Rather than have a traditionally “proper” data model–which takes long to maintain–you can create data relationships on the fly and graph your organization’s way to growth. The one thing all these solutions agree on is that master data needs a ‘special’ environment that provides data lifecycle management processes to meet organizational requirements.

There is no silver bullet that can solve for master data management. The rub is that there is never enough money, time or people to do everything. Large organizations often have complex systems built over many years, and they cannot simply jump to a non-relational graph database. To that end, growth strategies will not be successful with only an on-premise, “single-version-of-truth” data model either. The technologies and corporate teams need to meet in the middle with an ecosystem of solutions to support both the rapid growth mindset, as well as the need to keep the lights on.

In 2018, the path to follow is a practical approach. It seems simplistic as I describe it to company executives, peers, and industry partners. First, work to understand where all MDM data comes from and where it goes. Second, meet with stakeholders to understand critical data that drives engagement across channels. Third, understand organizational metrics and notify data producers where low data quality impacts our metrics. Fourth, for the critical master data, be relentless in driving sound, practical processes with a small, formidable team that ensures high data quality to support growth and drive efficiency gain.

Finally, truly understand your organization’s requirements and be open to new ideas. Maybe a mix of on-premise and cloud solutions will meet your requirements, or maybe every master data model change does not have to go through a full data modeling review cycle. Can your teams test and learn through graphing or artificial intelligence? One thing I know for sure is that simply adding technology or people will not solve all MDM problems. New business strategies demand an ecosystem of solutions that meet specific needs.

Read Also

Using Data to Delight Customers

Using Data to Delight Customers

Doug Allen, CIO, Nelson-Atkins Museum of Art
How to Make your Customer Data Actionable

How to Make your Customer Data Actionable

Susan Ganeshan, CMO, Clarabridge
Making Data Visualization as part of your BI strategy

Making Data Visualization as part of your BI strategy

Oliver Gomes, Director, Business Intelligence, Condé Nast

The "CDP" Cure for Common "Rx" Marketing

Meghann Chilcott, Chief Technology and Marketing Officer, Benzer Pharmacy

Weekly Brief

Top 10 Customer Data Platform Solution Companies - 2019

Customer Data PlatformSpecial